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Abstract. In this paper we present a computer simulation of a random walk (RW) for diffusion
on a rearranging lattice. The lattice consists of two types of sites—one highly conducting (type 1)
and the other poorly conducting (type 2), distributed at random. The two types of site are
assigned different waiting times (τ1 for type 1 andτ2 for type 2). We assume that at intervals of
time τr the site distribution changes. The effect of this rearrangement on the diffusion coefficient
is studied with varyingτr . We study this effect for different ratios of dwell time of the two types
of site (R) and also for different fractions (X) of the less conducting sites. An empirical relation
for D(τ1, τ2, τr , X) is suggested. We have employed the well model and considered diffusion
controlled by sties, rather than bonds. So our approach is different from the dynamic bond
percolation model, which studies these aspects. Our results show that the diffusion coefficient
D may change by a factor of up to 3 (approximately) for rapid rearrangement, and there is a
considerable effect of varyingX andR on the range of variation ofD, whereX is the fraction
of poorly conducting sites, andR is the ratio of the dwell times for types of site. Further
for τr > 250 τ (τ is the time unit for the random walk) the effect of rearrangement becomes
negligible. The results may be useful for studying diffusion and conduction of ion conducting
polymers.

1. Introduction

A convenient way to study diffusion and conduction is through the random walk formalism.
Disordered media, which comprise many systems of practical interest, have been analytically
treated by this method [1–3]. However, an additional complication may be present in
the system in the form of dynamic disorder. In this case the system undergoes some
reorganization with a characteristic timescale. This picture applies to polymers and also
to glasses above their glass transition temperature. Exact analytical results for one version
of this situation have been obtained in a series of works [4–6], where the dynamical bond
percolation model (DBPM) has been proposed and treated in detail.

In the present communication we are interested in a different approach to the same
problem of calculating the diffusivity of a disordered lattice which is rearranged after a
characteristic time intervalτr . We consider here a ‘well’ model instead of the ‘barrier’
model. In other words we are concerned withsitesrather than bonds. We study diffusion in
this system in two dimensions through a computer simulation of the random walk including
the rearrangement effect.

No exact results are available for this model with finite renewal timeτr though the
limits for τr = 0 andτr = ∞ can be exactly calculated. We have variedτr from 1 to 250τ ,
whereτ is the time unit for the random walk. Our simulation results agree with the limiting
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values and we show that variation inD with τr within the limits can be represented by a
simple interpolation formula. We also find that the limit for largeτr is approached very
closely forτr = 250 τ .

We have considered random arrangements of two types of site with different
conductivities represented by different dwell times. This work has been developed with
the quasi-two-dimensional polymer thin films in mind; here the highly conducting sites
represent the amorphous phase and the low conducting sites the crystalline phase. However
the treatment is general and may be applied to any other situation where there are two
different species with different conductivities and rearrangement.

It is our aim to identify clearly the regime where this effect is most important and
to assess how much it can affect the diffusion coefficient. We show that the diffusion
coefficient may increase by a factor of about 3 for very rapid rearrangement, i.e. if the
characteristic rearrangement timeτr is of the same order as the hopping timeτ . But for
τr > τs ≈ 250 τ there is no significant change in the diffusion coefficient (D) i.e. the
diffusing particle sees the lattice as a quenched disordered system.

We have studiedD versusτr curves varying two parameters—(a) the ratio of dwell
times on the two different types of site

R = τ2

τ1
= p1

p2
(1)

(τ1, τ2, p1 and p2 are the dwell times and jump probabilities of type 1 and 2 sites
respectively) and (b) the fraction of low conducting sitesX. We also measure the range
of variation in D for different X. This may be measured by1D = Dmax − Dmin or
Dr = Dmax/Dmin. 1D has a maximum atX = 0.2, andDr is maximum atX = 0.5.

In the next section our random walk algorithm is described and in section 3 the results
are given. In the last section we discuss the implication of our results and compare them
with earlier work on related problems.

2. The random walk algorithm

Our random walk algorithm is an extension of the algorithm used earlier by Bhattacharyya
et al [7]; the new feature is that hereτr is explicitly specified and varied. As mentioned in
the earlier section, the random walk (RW) is performed on a two-dimensional square lattice
containing two types of site. The distribution of the two different types in the lattice is
random. The lattice sties actually represent small regions of the system which belong to a
single phase only, and the lattice spacing (ξ ) represents the distance between such sites. A
site belonging to theith phase is assigned a jump probabilitypi for jumping to a nearest
neighbour site, at each time step. This implies as average waiting timeτi at theith site. A
longer waiting time corresponds to a lower conductivity of the phase and hence of the site.

A distribution of energetically different sites on a lattice is usually represented in a
simulation model by either of the following pictures:

(1) well model;
(2) barrier model.

In the well model each site is treated as a potential well. The well depthwi is a
characteristic of the site typei and it determines how long the random walker will be
trapped there.

In the barrier model a barrierbij is assumed to exist between sitesi and j . The
probability for the particle to hop fromi to j is determined by the nature of both the sites
i andj .
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In the present work we have employed the considerably simpler well model, where the
probability of jumping from a site is determined by the phase of that site only. The walker
i.e. the diffusing particle is allowed to go to any of the four nearest neighbours with equal
probability whether they belong to the highly or poorly conducting phase. The steps of the
RW are as follows.

(1) The walker starts on an initial lattice point (x0, y0) on a two dimensional lattice. A
random number is chosen to determine type of the site, and another to determine whether
it jumps and its final position after the jump.

(2) We assume that the host lattice retains the memory of a certain distribution of sites
for τr time steps; after that there is a rearrangement. This is implemented as follows.

During the time intervalτr the walker stores the coordinates and the character (whether
type 1 or type 2) of the sites is visited. So if the walker visits the same site more than once
within the intervalτr , it finds there the same phase as was present earlier.

(3) Step (1) is repeated during the time intervalτr , with the current site coordinates
instead of (x0, y0).

(4) At t = (τr + 1), the system forgets the previously storedτr sites and their character
and starts a fresh list for the next interval.

(5) Steps (1)–(3) are repeated again for the next time intervalτr .

The above procedure is repeatedK times, where

K = Ntotal

τr
. (2)

Ntotal is the total number of time steps for a particular walk.
Due to the stochastic nature of the process, one has to average over a large number of

such walks to obtain a meaningful value of〈r2〉. In this work the walker executes a random
walk of (15 000–75 000) steps andr2 is averaged over (20 000–100 000) walks. This gives
sufficiently good convergence up to three significant figures for the diffusion coefficient.
We have calculatedD for τr varying from 1 to 250. For still higherτr there is negligible
change inD.

This random walk algorithm allows the walker to move on an effectively infinite
sample. This is possible because here we do not take a quenched system with sites assigned
specifically to a definite phase. So the problem of the finite size effects is avoided. There
is however a restriction to the walk size due to limited computer time.

3. Results

3.1. Variation ofD with τr for constantR andX

Figure 1 shows a typical result for〈r2〉 versust . The linear nature shows that diffusion is
normal. So the diffusion coefficient is obtained from the relation

〈r2〉 = 4Dt. (3)

Using the above RW algorithm, the diffusion coefficient was obtained as a function ofτr ,
X andR. We have keptτr constant atτr = 10, andτ1 has been varied from 10 to 1.01.
We findD does not change on further decrease ofτ1. The minimum valueτ1 can have is 1
corresponding top1 = 1. Figures 2 and 3 are plots ofD versusτr for different values ofR
(9.9, 8, 6 and 1) atX = 0.14 andX = 0.80 respectively. Figure 4 is a plot ofD versus 1/τr
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for differentR values at a constantX (=0.14). The maximum and the minimum values for
D corresponding toτr → 0 andτr →∞ are given by

Dmax = 1

4τr

[
(1−X)+ X

R

]
(4)

and

Dmin = 1

4τ1
[(1−X)+XR]−1 (5)

with lattice constant=1. These values agree with the simulation results. In figures 2 and
3 the simulation results forD are shown as discrete points; from the variation inD we
suggest an empirical relation forD = D(τr, τ1, τ2, X). Calculated values from this relation
are shown as continuous curves.

Figure 1. Plot of 〈r2(t)〉 versus time forX = 0.14 andR = 9.90.

We now give the proposed formula forD. D may be written in terms of an effective
time τeff which is some sort of average over the characteristic times for the two types of
site. Casting equations (4) and (5) in this form, we have

τeff (τr →∞) = τmax = τ1(1−X)+ τ2X (6)

and

1

τeff
(τr → 0) = 1

τmin
= 1−X

τ1
+ X
τ2

(7)

i.e. in the first case the walker sees an average waiting time, whereas in the second case it
sees an average jump frequency. In other words in the first case we have a Voigt average
of waiting times and in the second case a Reuss average [8]. For finiteτr we propose the
following relation

1

τeff (X, τ1, τ2, τr )
= 1

τmax

α2

α1+ α2
+ 1

τmin

α1

α1+ α2
(8)
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Figure 2. Plot of diffusion coefficient (D) versus renewal timeτr atX = 0.14 forR = 9.9 (F),
R = 8 (♦), R = 6(�) andR = 1 (◦). The calculated values using equation (7) are shown by
continuous lines.

where

α1 = 1− exp

(
− τ1

Xτr

)
(9)

α2 = exp

(
− τ2

(1−X)τr

)
. (10)

This relation reduces to the correct limits forX = 0 andX = 1, as well asτr → 0 and
τr →∞. It reproduces quite well the strong nonlinearity inD between the limiting values.
The calculated values are slightly higher than the simulation results, as shown in figures 2
and 3. The form of equation (8) is not symmetric with respect to interchange of phases 1
and 2; theD versusτr curve has sharp gradient atτr → 0 for smallX, whereas for large
X the slope(dD/dτr)|τr→0 is almost zero. The simulation results have a steep gradient at
τr → 0 for high as well as for lowX. So our formula (8) works better in the dilute limit of
the traps, i.e. low conducting sites. Interchanging the factorX and(1−X) in equations (9)
and (10) we obtain a formula more appropriate for the dilute limit of the highly conducting
sites (i.e. largeX). Using this formula we find a better fit forX = 0.80 and worse fit for
X = 0.14. However since our twoX values are not chosen symmetrically aboutX = 0.50,
the overall results are better for equation (8). The simulation was performed only for those
X values where experimental results are available [9]. The whole range ofX values will
be explored and compared with an analytical calculation which is in progress.

Salient features of our results are as follows. The change inD with τr is significant
for τr < τs ≈ 50 τ . The major fall however occurs withinτr = 50. The hopping timeτ
is the smallest time scale for our system. Forτr > τs the system is effectively quenched.
This is seen more clearly in figure 4. We find that the limiting value ofD for τr →∞ is
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Figure 3. Plot of diffusion coefficient (D) versus renewal timeτr atX = 0.80 forR = 9.90 (F),
R = 8 (♦), R = 6 (�) andR = 1 (◦). The calculated values using equation (7) are shown by
continuous lines.

hardly different from the last calculated data point corresponding toτr = 250τ . So we take
τs = 250τ . For smallX and largeR, i.e. the residence probability of the type 1 phase being
negligibly small, the average time elapsed between jumpsτi may be approximated asτ . In
this case we can obtain an estimate ofτs in real units. For a polymer system,τi ≈ 10−6 s
according to nuclear magnetic resonance (NMR) linewidth narrowing experiments [10, 11].
So fromτs = 250 τ , we find thatτs ∼ 10−4 s.

3.2. Range of variation ofD for differentX

It is obvious that for any value ofR, 1D = 0 andDr = 1 for bothX = 1 andX = 0,
i.e. if there is only one type of site on the lattice. We find thatDr has a maximum for
X = 0.50, whereas1D has a maximum atX = 0.20. This is becauseD itself is larger
at lowerX. TheX values of peaks obtained forD may not correspond to those obtained
while studying conductivity. This is due to the fact that the charge carrier concentration
comes into play when conductivity is calculated.

Again if R = 1, i.e. all sites are equivalent,1D = 0 andDr = 1. The effect of
increasingR towardsR→∞ is seen in figures 1 and 2.

4. Discussion

4.1. Comparison with DBPM model

We discuss briefly the DBPM which is concerned with the barrier model i.e. the bond picture
of the same problem.
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Figure 4. Plot of diffusion coefficient (D) versus 1/τr atX = 0.14 forR = 9.9 (F), R = 8 (♦),
R = 6 (�) andR = 1 (◦). The continuous lines are simply lines joining the points.

Starting with a one-dimensional model, a series of works have been published [4–6]
which develop the dynamic bond percolation (DBPM) model, including different features
and extending it to higher dimensions. These works develop an analytical approach to the
problem of diffusion in a rearranging lattice with bond renewal. Here one type of site is
conducting and the other is completely insulating. The review by Nitzan and Ratner [4]
gives a complete overview of the model.

The most significant result of this work is the demonstration that the diffusion coefficient
D(τr) with renewal is identical to a frequency dependent diffusion coefficientD(ω) on a
static lattice through an analytical continuation rule.

D(ω, τr) = D0

(
ω − i

τr

)
.

Their work is also compared with effective medium models [4].
The present model forR →∞ may be compared with the DBPM. A basic difference

is to be noted in the two cases. In DBPM or any standard bond percolation model the
insulating sites are blocked i.e. inaccessible to the walker. In the present model, however,
the insulating sites are infinite traps, from which the walker cannot escape. The diffusion
behaviour of the two models is quite similar, in spite of this difference. Let us consider
the situation below the percolation threshold. In DBPM the walker is confined to a finite
cluster after some characteristic time which is a function ofX. If τr is larger than this
time, the mean square distance travelled saturates to a constant value. On renewal, the sites
rearrange and the walker is released from the previous cluster it occupied. Now〈r2〉 starts
to increase again. This continues is steps as shown in figure 5 of [5].
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Figure 5. Plot of1D (M) andDr (◦) versusX for a fixedR = 9.9.

Let us now consider a similar situation in our model. Here the walker is trapped in one
of the insulating sites after a certain time depending onX. But after renewal the site may
change to a conducting site and release the walker, so〈r2〉 increases in steps just as in the
DBPM. This shows that the overall diffusion behaviour is similar, though the microscope
pictures are quite different. Of course the percolation threshold in this case is expected to
be the site percolation rather than the bond percolation threshold appropriate for the DBPM.
We have not yet attempted simulation of this limiting situation.

The qualitative appearance of the curves forD against 1/τr in [5] is very similar to our
figure 3, which illustrates the underlying similarity of the two approaches.

4.2. Conclusion

The effect of rearrangement of the lattice due to liquid-like behaviour at short length scales
is considered to be very important for studying conduction in polymers. We have assessed
how important it can be, and when particularly it must be taken into account.

This effect becomes unimportant afterτr > τs , assumingτ ∼ 7× 10−7 s [10, 11];τs is
of the order of milliseconds. For largerτr it suffices to take the quenched lattice limit.

Our system is an infinite lattice, so finite size effects which may distort the results
considerably are absent. It is to be noted that our definition ofτr refers to the time for
interchange of crystalline and amorphous sites. This is similar to the original definition
of renewal time (τren) by Druger et al [5], but in other works different renewal times
for crystalline and amorphous regions have been considered [12]. Chang and Xu have
considered rotation of polymer chain sections in their work [13].

We plan to incorporate our findings reported here in an ongoing calculation on a
detailed study of temperature and salt fraction dependence of conductivity of polymer–
salt complexes. In this study the variation ofτr with temperature or other factors may be
important. However, as we have shown the rearrangement effect itself cannot be responsible
for a change inD by as much as several orders of magnitude and the effect is most
pronounced at low crystallinities.
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